Continuous and discontinuous transitions between two types of capillary bridges on a beaded chain pulled out from a liquid.

نویسندگان

  • Filip Dutka
  • Zbigniew Rozynek
  • Marek Napiórkowski
چکیده

Capillary bridges can be used for fabricating new materials and structures. Here, we describe theoretically and validate experimentally the mechanism of formation of capillary bridges during a process in which a beaded chain is being pulled out from a liquid with a planar surface. There are two types of capillary bridges present in this system, namely the sphere-planar liquid surface bridge initially formed between the spherical bead leaving the liquid bath and the initially planar liquid surface, and the sphere-sphere capillary bridge formed between neighbouring beads in the part of the chain above the liquid surface. During the process of pulling the chain out of the liquid, the sphere-planar liquid surface bridge transforms into the sphere-sphere bridge. We show that for monodisperse spherical beads comprising the chain, this transition can be either continuous or discontinuous. The transition is continuous when the diameter of the spherical beads is larger than the capillary length. Otherwise, the transition is discontinuous, likewise the capillary force acting on the chain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant.

We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C(8)H(18)) lubricant. We used two types of substrate--flat and corrugated--and varied the lubricant coverage from approximately 1/8 to approximately 4 ML (monolayers) of octane. For the flat substrate without lubricant the maximum adhesion was found to b...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

The Effect of Vertical Component of Earthquake on Continuous and Monolithic Frame Bridges

Performance of structures during recent earthquakes shows that the effect of vertical component of earthquake (VCE) could be considered as one of the main causes of bridges collapse. In most of bridge design codes, for seismic analysis of bridges, VCE is not taken into account or a distinguished method isn’t presented for assessment of VCE. In the present work, the effect of VCE on two existing...

متن کامل

Effect of Link Slab on Seismic Response of Two Span Straight and Skew Bridges

Highway bridges are frequently constructed as simple span structures with steel or concrete girders and a cast-in-place concrete deck, spanning from one pier to another. At each end of the simple span deck, a joint is provided for deck movement due to temperature, shrinkage, and creep. Bridge deck joints are expensive and pose many problems with regard to bridge maintenance. Elimination of deck...

متن کامل

Possible Isostructural Transitions in the Ferroelectric Liquid Crystals in High External Electric Fields

Two different types of isostructural transitions between two homogeneously tilted ferroelectric liquid crystalline structures are discussed. A strong biquadratic coupling between the tilt and the polarization leads to the discontinuous jump of the tilt magnitude when the electric field is increased. A strong anisotropic quadratic coupling with the electric field leads to the continuous structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 13 27  شماره 

صفحات  -

تاریخ انتشار 2017